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Niobium nanoclusters studied with in situ transmission
electron microscopy
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Structural aspects of deposited niobium nanoclusters approximately 10 nm in size have been
explored by means of high-resolution transmission electron microscopy. The niobium clusters have
a bcc structure and a crystal habit of rhombic dodecahetinasitu heating up to~800 °C revealed

a resistance to high temperatures, in the sense that the cluster habit is preserved. However, the
internal structural order of the clusters is altered due to formation of niobium oxide domains within
the clusters. Coalescence does not occur even at the highest temperatures, which is attributed to the
presence of facets and the occurrence of oxidation during heat treatmer200® American
Institute of Physics.[DOI: 10.1063/1.1625789

Nanostructured materials are widely studied because ahbar. The magnetron power was set to 100 W with a plasma
their potential in advanced materials and devices. The studgurrent of about 0.5 A. Clusters were deposited directly onto
of nanocluster assembled thin layers is driven by two majosilicon nitride and carbon support films of thickness 20 nm
technological reasoris ! The first stems from the demand to for analysis in a JEOL 2010F transmission electron micro-
miniaturize further microelectronic devices where one wouldscop&TEM). The samples were briefly exposed to air during
like to grow well-organized nanometer-size islands with spetransfer to the microscope.
cific electronic properties. The second reason finds its origin ~ An advantage of the source is that it provides a relatively
in tailoring nanostructured materials for specific functionalmonodisperse cluster size with an average cluster diameter of
properties that differ from their bulk counterparts. 10 nm(see Fig. 1 The Nb nanoclusters are randomly de-

Transition metal clusters, mostly those of Fe, Co, Ni, andPosited[Fig. 1(a)], where any self-arrangement on a two-
Nb, have been the subject to a large number of studies dedilimensional(2D) superlattice is excluded. Deposition oc-
ing with their structure, chemical reactivity, magnetic prop-CUrred at room temperature, and at low energy to ensure that
erties, and ionization potentidis\b is a nonmagnetic tran- the Nb clusters remained intact having a bcc structure as
sition metal, offering relative simplicity in the relationship diffraction analysis indicategFig. 1b)].
between structure and functional cluster properties. Nb at-  Figure 2 depicts high-resolution TEM images (@f as-
oms form strong directional chemical bonds, which lead to
well-defined structure¥The majority of studies on Nb clus- v PP W, T NS
ters thus far have focused on systems with a rather small .) 3 '(

-

number of atoms per clust€«30), and their special physi- ', . .' i R

cal propertiediionization potential, electron affinity, atomi- bl - ‘e ¥ :' 2 23
zation energy as a function of cluster izes well as struc- i . X Sk "‘ o o ;t ._‘. *

tural properties® Research on thelynamical aspects of : e ;-o ! 3% . -g‘, 3
larger size niobium clusters as a function of temperature has g L Ly TR .{' LAY |
been very limited. It has been suggested that Nb nanopar- :: . .: '. o A . *2 o M R
ticles possess a crystal habit that is a truncated rhombic o 2 3%, . : R L9 "
dodecahedrol: Nevertheless, our high-resolution transmis- £ o o g L
sion electron microscop§fHRTEM) investigations show an- [ L0 g i B bt T - Dty 1 o

other possibility, as will be explained in this letter. Therefore,
in this work we explore the crystallography of nanometer
scale Nb clusters, in addition to any cluster—cluster interac-
tions and structural transitions that might occur undesitu
heat treatment up to a temperature of 800 °C.

Cluster deposition was performed using a NC200U
source manufactured by Oxford Applied Resedrdh.is
based on the gas aggregation technijusing a magnetron
sputtering device to create a vapor of Nb atoms. These atoms
then aggregate in a flow of Ar gdpressure X 10 2 mba
forming clusters. The chamber base pressure wd® °

FIG. 1. () TEM bright-field image showing random distribution of as-

deposited Nb nanoclusterd) selected area diffraction of the as-deposited

dAuthor to whom correspondence should be addressed; electronic maifilm; the simulation of the diffraction profile for bcc niobium is superim-
hossonj@phys.rug.nl posed.
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FIG. 2. (a) A single Nb nanocluster as-deposited on gi\Simembrane(b)
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FIG. 3. The top schematic shows Integrated intensity of the diffraction
peaks in range of 3—8.5 nm as it develops duringn situ heat treatment:

(a) as-depositedp) 300, (c) 500, (d) 800 °C,(e) cooled slowly back to RT.
First, the shift and broadening of the peak is visible, then, the fcc structure
appears remaining unaltered upon cooling to RT.

tural changes occur as a result of the heat treatment as is
shown in diffraction analysigFig. 3). The first structural
changes are detectable at 300 °C by the slight shift of the 110
peak. The maximum shift is observed at 500 °C, where the
shift represents an expansion of the lattice parameter ap-
proximately by 7%, which is at the initial stage of the bcc to
fce structural transformatiofFig. 3). The structural changes
are due to oxidation of the clusters with the NH@ubic
monoxide to be the most possible structure, since it is
known to form under low oxygen pressuréshis is typical

for the ambient vacuum of- 10" 7 Torr duringin situ heat
treatment inside the TEM. In addition, the electron energy
loss spectroscopy performed after annealing shows clear
presence of the oxygen in analyzed area, undoubtedly con-
firming the formation of the niobium oxide.

More detailed information is provided by lattice imaging
on Fig. 2b), which corresponds to the cluster displayed in
Fig. 2(a) after a heat treatment at 800 °C. Splitting and shift-
ing of the originally 11Q..spots is visible in the inset of Fig.
2(b) representing its power spectra. Measured proportion of
the split spots corresponds to the value 1.145, which is in
good agreement with the theoretical value for fcc lattice
dq11/d590=1.155. These observations point to the formation
of niobium oxide subdomains of various 110 orientations
within the nanocluster. The latter exclude the formation of
niobium monoxide monocrystal dfL10)., orientation. The
heat treated structure remains unaltered upon slowly cooling
down to room temperature.

In general the crystal structure and habit of nanoparticles
depend on temperature and composition. In many cases the
particles have a polyhedral form with various degrees of

the same cluster after heat treatment at 700 °C. The upper insets in bofpncation. These shapes occur since they lead to surface

images represent the corresponding power spettjiamagnified power
spectrum of the heat-treated cluster where is shown the clear appearance%'FI

the radial and the circumferential spot splitting.

deposited which represen{411),.. projection and(b) an-

ergy minimization for particles formed at equilibrium, or
because of kinetics where the shape is determined by the rate
at which different crystal faces grow. The combination of
factors such as temperature, kinetics, impurities, and surface

nealed single Nb cluster. No oxide shell is detectable as irnergy effects could lead also to unusual nanoparticle shapes
our previous case of iron clustefsDeposited clusters do not and size distribution$:

exhibit structural instabilities or collapsing under electron

The crystal structure at room temperature as is shown by

beam irradiation. The temperature of 800 °C is the highesthe(111) projection having a hexagonal shape corresponds to

that the SjN, substrate can withstand. Considerable struca rhombic dodecahedron, while a hexagofHlO and a
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identical conditions? the as-deposited Fe clusters were en-
closed by an oxide shell of thickness2 nm while for Nb
any oxide shell is rather undetectable with oxidation occur-
ring upon further heat treatments at elevated temperatures.
Indeed, upon a heat treatment up to temperatures as high as
T./3, the Fe cluster coalescence was fast with the clusters
fully fused into larger ones. After disintegration of the oxide,
the crystal habit of the annealed Fe nanoclusters was a trun-
cated rhombic dodecahedr&nwe should also point out that
in Fig. 2 we do not observe any significant change in cluster
size after heat treatment. Indeed, even if the whole cluster
was oxidized forming NbO, since for the Nb and NbO the
volume per atom is 1.80810° 2 nm® and 2.541
x 1072 nm?,*3 respectively, that would lead to a size ratio
dnpo/dnp=1.12. The latter yields an increment in size at
most by 12%, which could be observed by HRTEM. How-
ever, the presence of the delocalization effect around the
°C: no coalescenqqyster edges can hinder such a small size increments of the
order of 10%.

In conclusion, cluster coalescence is negligible even up
square(100 projections were also found. Truncation of the {5 goo °C, which indicates that there is no diffusion of sur-
rhombic dodecahedron increases the spherical shape of thece atoms to drive coalescence. A significant role is played
cluster, while also increasing the fraction of the energeticallyOy the presence of facets that generally suppress the ten-

less favorable faces. The degree of truncation can be dgfency to coalesce, and the presence of the niobium oxide
scribed by the ratioRyg, which is given by Ryg=2 phase.

— 212 (7v100! Y110 12 based on the Wulff construction. When
Rrr=0 there is no truncation of the rhombic dodecahedron,  The authors would like to acknowledge financial support
while whenRg=1 we have a fully truncated shape, i.e., afrom the Materials Science Center MS@rogram and the
cuboctahedron. Therefore, the case of untruncated dodecahdetherlands Institute for Metals Research. The authors thank
dron (Rgr=0) vyields a ratio of surface energies H. Nicolaifor using his scripts for diffraction peaks measure-
(v100/ 7110 =2 is in agreement with the fact that tfielGd ~ ments.
faces have the lowest surface energy for bce structires.
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FIG. 4. Two Nb nanoclusters after heat treatment at 700
is observed.



